Asymmetric Synthesis of Dibenzylbutyrolactones and Aryltetralin Lignan Lactones by Tandem Conjugate Addition to a Chiral Butenolide

Andrew Pelter,^{*,}^a Robert S. Ward,^{*,}^a D. Martin Jones^a and Peter Maddocks^b ^a Chemistry Department, Swansea University, Singleton Park, Swansea SA2 8PP, UK ^b Wellcome Foundation, Temple Hill, Dartford, Kent DA1 5AH, UK

Addition of sulfur-stabilised carbanions to (-)-5-(1-menthyloxy)furan-2(5*H*)-one followed by reaction with an aromatic aldehyde affords a short synthesis of enantiomerically pure dibenzyl-butyrolactone derivatives. Desulfurisation with NaBH₄/NiCl₂ proceeds in almost quantitative yield, and reduction with NaBH₄/KOH gives the parent dibenzylbutyrolactones including (-)-6-epi-podorhizol. These undergo cyclisation with acid to give homochiral aryltetralins including (-)-deoxyisopodophyllotoxin in high yield.

Lignans display a wide range of biological activity.¹⁻⁴ Thus, podophyllotoxin and its demethyl derivatives show powerful and specific cytotoxic activity,^{5,6} and derivatives of these compounds are used clinically against small cell lung cancer and testicular cancer.^{7,8}

We have previously shown that tandem conjugate addition reactions to butenolide provide an efficient route for the synthesis of *trans*-dibenzylbutyrolactone derivatives, and that these can be cyclised to afford aryltetralin lactones including analogues of podophyllotoxin (Scheme 1).^{9,10}

As part of our studies of the asymmetric synthesis of lignans,¹¹ we decided to extend this strategy by making use of a chiral butenolide.^{12,13} We chose to use (-)-5-(1-menthyloxy)-furan-2(5H)-one **2a** which had earlier been prepared by Feringa et al.¹⁴⁻¹⁶ starting from 5-hydroxyfuran-2(5H)-one **1** which, in turn, can be obtained by photooxygenation of furfural or furoic acid. We now show that **2** can be prepared very conveniently from commercially available 5-methoxyfuran-2(5H)-one **3** (Scheme 2). Both diastereoisomers of the 5-menthyloxyfuran-2(5H)-one **2** are obtained as a 60:40 mixture which can be

separated by recrystallisation from light petroleum (b.p. 40– 60 °C) at -25 °C to -30 °C to give the major diastereoisomer 2a¹⁵ as white needles $[\alpha]_{D}^{20}$ -137 (EtOH, c 1.00), m.p. 70.4– 71.2 °C (lit., ¹⁵70.5–70.7 °C). Furthermore, additional quantities of 2a can be obtained by re-equilibration of the mother liquor (mainly 2b) by heating with toluene-*p*-sulfonic acid (PTSA) (0.3 mol%) in benzene at reflux, followed again by recrystallisation from light petroleum.¹⁵

Treatment of the furanone 2a with the lithio derivative of 3,4-dimethoxybenzaldehyde diphenyl thioacetal, followed by quenching with water, gave the monobenzylbutyrolactone 4a in high yield (Scheme 3). Similarly, treatment of 2a with the lithio derivative of 3,4-methylenedioxybenzaldehyde diphenyl thioacetal gave 4b. Treatment of 4a and 4b with nickel boride (see below) gave the desulfurised products 5a and 5b. The ¹H and ¹³C NMR spectra of 4a, b and 5a, b are listed in Tables 1 and 2. The small coupling constant observed between 4-H and 5-H in both 4a, b and 5a, b proves that the benzyl group has been introduced *trans* to the menthyloxy substituent.

Treatment of the furanone 2a with the lithio derivative of 3,4-dimethoxybenzaldehyde diphenyl thioacetal, followed by reaction with 3,4-dimethoxybenzaldehyde or 3,4-methylenedioxybenzaldehyde gave, in each case, a single adduct 6a and 6b in 81 and 99% yield, respectively (Scheme 3). Similarly, treatment

of the furanone **2a** with the lithio derivative of 3,4-methylenedioxybenzaldehyde diphenyl thioacetal followed by reaction with 3,4,5-trimethoxybenzaldehyde gave a single adduct **6c** in 80% yield. The ¹H and ¹³C NMR spectra of the dibenzylbutyrolactone derivatives **6a**-c are listed in Tables 3 and 4.

The all-*trans* arrangement of the three substituents on the butyrolactone ring in **6a**-c was again assigned on the basis of the ¹H NMR spectra and by analogy with previous work on conjugate addition to butenolide.⁹⁻¹¹ This was later confirmed by X-ray crystallography (see below). The OH stretching frequency in the IR spectrum was unaffected by dilution, which was indicative of intramolecular hydrogen bonding between the benzylic hydroxy and the lactone carbonyl group. The *threo* configuration of the benzylic hydroxy group at C-6 was then assigned on the basis of the observed coupling constant (8.4 Hz) between 3-H and 6-H.^{17,18} The stereoselectivity of the reaction including the control of stereochemistry at C-6 is consistent with a chelated six-membered cyclic transition state (Fig. 1).^{19,20}

Fig. 1 Stereoselectivity of formation of 6a-c

Treatment of the furanone 2a with the lithio derivative of 3,4-dimethoxybenzyl phenyl sulfide followed by reaction with 3,4-dimethoxybenzaldehyde or 3,4-methylenedioxybenzaldehyde gave, in each case, a readily separable 1:1 mixture of two diastereoisomeric adducts 7 and 8 in 81 and 86% combined isolated yield, respectively (Scheme 4).

That 7a, b and 8a, b only differed in their configuration at C-7 was established by desulfurisation using nickel boride²¹ which gave the same products 9a and 9b in almost quantitative yield from both diastereoisomers (Scheme 4). Furthermore, 9a and 9b were also obtained by desulfurisation of the diphenyl thioacetal adducts 6a and 6b, demonstrating that 6, 7 and 8 have the same configuration at C-3, C-4, C-5 and C-6. X-Ray crystallography of 8b^{12,29} confirmed the absolute configuration at all of the chiral centres in these adducts. Desulfurisation of 6c gave 9c in 92% yield. The ¹H and ¹³C NMR spectra of 7a-c and 8a-c are listed in Tables 3 and 4.

Attempts to cyclise compounds 6, 7 and 8 under acidic conditions were unsuccessful, giving either no reaction or a complex mixture of products. Attempts were also made to cyclise the desulfurised compound 9b. These reactions were also unsuccessful, although in one difficultly reproducible reaction

Table 1 ¹H NMR spectra of monobenzylbutyrolactone derivatives*

	4a	4 b	5a	5 6
3a-H	2.93dd (3.1, 18.7)	2.97dd (18.7, 2.7)	2.74dd (8.2, 17.4)	2.68dd (8.0, 17.6)
3b-Н	2.84dd (9.9, 18.7)	2.79dd (10.0, 18.7)	2.21dd (2.1, 17.4)	2.14dd (2.8, 17.6)
4-H	3.07dd (3.1, 9.9)	2.96dd (2.7, 10.0)	2.61m	2.50m
5-H	5.85s	5.81s	5.39s	5.30s
7a-H			2.73m	2.67m
7b-H			2.58d (11.0)	2.48d (10.9)
H–A†	3.46dt (3.3, 10.3)	3.45dt (4.0, 11.0)	3.46dt (4.2, 11.0)	3.39dt (4.1, 10.7)
OMe	3.87s		3.86s	
OMe	3.74s		3.85s	
OCH ₂ O		5.98d (1.4)		5.87s (2 H)
-		5.97d (1.4)		× ,
Me	0.90d (7.4)	0.90d (6.5)	0.89d (6.5)	0.83d (7.1)
Me	0.85d (7.2)	0.86d (7.1)	0.87d (6.9)	0.79d (7.0)
Me	0.75d (6.9)	0.73d (6.9)	0.77d (7.1)	0.72d (7.6)
	7.17–7.37m (11 H)	7.20-7.40m (11 H)	6.70s	6.58d (1.6)
Arom.	6.95dd (2.4, 8.9)	7.70dd (2.0, 8.3)	6.82d (8.1)	6.68d (7.8)
	6.67d (8.9)	6.65d (8.3)	6.70d (8.1)	6.54dd (1.7, 7.9)

* All spectra recorded in CDCl₃ solution. † H-A is 1-H of menthyloxy group.

an interesting compound tentatively assigned structure 10 was obtained. This is related to the natural product lirionol (11).²² The formation of this compound would involve a double cyclisation leading to the formation of two new carbon-carbon bonds and represents a very short synthesis of the lirionol group of compounds (Scheme 5). The ¹H NMR spectra of 10 and similar compounds 12a and 12b related to 11^{22} are listed in Table 5.

A number of acidic reductions (e.g. Et_3SiH/BF_3) for removing the menthyloxy substituent from **9a** and **9b** were investigated, but these were largely unsuccessful. We therefore adopted the conditions reported by Vandewalle *et al.*²³ for carrying out this step. Thus, treatment of **9a** and **9b** with NaBH₄/KOH gave the dibenzylbutyrolactones **13a** and **13b** in 50 and 38% yield, respectively (Scheme 6). Treatment of these compounds with trifluoroacetic acid gave the aryltetralins **14a** and **14b** in 91 and 96% yields, respectively. Similarly, removal of the menthyloxy group from **9c** afforded (–)-epipodorhizol **13c**²⁴ in 43% yield and this underwent cyclisation with trifluoroacetic acid to give (–)-deoxyisopodophyllotoxin **14c**²⁵ in 92% yield. The ¹H and ¹³C NMR spectra of **14a–c** are listed in Tables 6 and 7.

 Table 2
 ¹³C NMR spectra of monobenzylbutyrolactone derivatives*

-					
	Carbon atom	4 a	4b	5a	5b
	C-2	175.56s	175.61s	176.12s	176.09s
	C-3	32.20t	32.00t	33.20t	33.17t
	C-4	47.90d	47.79d	47.67d	47.64s
	C-4a	70.58s	70.31s	37.23t	37.36t
	C-5	101.57d	101.51d	104.10d	104.10s
	C-1′	131.15s	132.54s	130.30s	131.51s
	C-2′	109.85d	107.30d	111.30d	108.33d
	C-3'	148.42s	147.35s	147.85s	146.39s
	C-4′	148.89s	147.82s	149.06s	147.94s
	C-5′	113.63d	110.10d	111.81d	109.04d
	C-6′	120.86d	122.63d	120.86d	121.83d
	OMe	55.90a		55.84a	
	OMe	55.81a		55.84q	
	OCHO		101.44t		101.00t

* All spectra recorded in CDCl₃ solution. OMenth and SPh carbons not included.

Experimental

IR spectra were recorded on a Pye Unicam SP1050 spectrometer. UV spectra were recorded on a Philips PU8720 scanning spectrometer. ¹H NMR spectra were recorded on a Bruker 250WM spectrometer at 250 MHz and, where indicated, an Hitachi Perkin-Elmer R24B spectrometer at 60 MHz. The highfield spectra were recorded using Bruker spectrometers at 300, 360 and 400 MHz. ¹³C NMR spectra were recorded on a Bruker 250WM spectrometer at 62.5 MHz. All spectra used tetramethylsilane as the internal standard, and were run in deuteriated chloroform, unless otherwise stated. The mass spectra were recorded on a VG-12-250 low-resolution quadruple mass spectrometer, whilst accurate mass measurements were obtained from a ZAB-E high-resolution, doublefocusing mass spectrometer. M.p.s were recorded on an Electrothermal digital melting point apparatus, and are uncorrected. Optical rotation values were obtained from a Perkin-Elmer 141 polarimeter, using a sodium lamp at 589 nm and values are recorded in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$.

The analytical HPLC work was carried out on a Milton Roy 3100 SpectroMonitor, 3000 constaMetric pump, CI-4100 integrator, and used an Apex II ODS 5 μ m column. Preparative HPLC work was carried out on a Gilson 806 manometric module, 305 pump, 115 UV detector, and used a L. Chrosorb BP18 10 μ m Knauer preparative column. Thin layer chromatography was carried out on Merck 5735 Kieselgel 60F₂₅₄

Table 3	¹ H NMR	spectra c	of dibenz	ylbutyrolad	ctone deriva	tives *
---------	--------------------	-----------	-----------	-------------	--------------	---------

	6a	6b	6с	7a	7b	8a	8b
3-Н 4-Н	3.30d (8.1) 2.87br s	3.25d (8.5) 2.88br s	3.18d (8.7) 2.72br s	3.14dd (3.5, 8.4) 2.53ddd (1.4, 3.5, 9.3)	3.03dd (3.4, 8.6) 2.52ddd (1.4, 3.4, 8.7)	2.61dd (2.3, 9.4) 2.44dd (1.3, 10.8)	2.60dd (2.3, 9.6) 2.36dd (2.3, 11.0)
5a-H	5.88br s	5.85br s	5.99m	5.42d (1.4)	5.45d (1.4)	6.09s	6.12s
50-н 6-Н	 4.84d (8.4)	 4.79d (8.4)	4.77d (8.7)	4.96d (8.4)	4.88d (8.6)	4.84d (9.4)	 4.75d (9.6)
7a-H		_		3.70d (9.3)	3.75d (8.6)	3.70d (10.8)	3.68d (11.0)
7b-H				-	-		
H-A†	3.53m	3.51m (4.2)	3.57dt (3.9, 11.0)	3.40dt (3.9, 10.6)	3.41dt (4.0, 10.6)	3.58m	3.60dt (4.1, 10.6)
OMe	3.86s (6 H)	3.858	3.948	3.918	3.848	3.898	3.838
OMe	3.85s (6 H)	3.65s	3.93s	3.89s	3.768	3.838	3.048
OMe			3.9 <i>3</i> s	3.838		3.008	
OMe	_	-		3./4s		3.628	 5.021/1/0
OCH ₂ O	_	5.91d (1.8)	5.92d (1.3)		5.96d (1.2)		5.93d (1.6)
		5.95d (1.8)	5.95d (1.3)		5.98d (1.2)		6.00d (1.6)
Me	0.94d (6.8)	0.93d (6.8)	0.94d (7.4)	0.90d (7.2)	0.90d (7.0)	0.9/d (6.8)	0.9/d (6.6)
Me	0.86m	0.86m	0.85m	0.83d (6.6)	0.85d (6.5)	0.91d (6.2)	0.93d (7.0)
Me	0.78d (6.9)	0.76d (6.9)	0.78d (6.9)	0.77d (6.9)	0.77d (6.9)	0.84d (6.9)	0.82d (6.9)
Arom	6.6–7.3m	6.6–7.3m	6.4–7.3m	6.4–7.3m	6.4–7.2m	6.2–7.2m	6.3–7.2m
	9a	9b	9c	13a	13b	13c	
3-H	2.58dd (4.0, 9.3)	2.54dd (3.6, 9.5)	2.52dd (4.0, 9.4)	2.63d (7.9)	2.57d (8.2)	2.61d (7.0)	
4-H	2.22m	2.20m	2.20m	2.50m	2.46m	2.48m	
5a-H	5.38d (1.8)	5.39d (1.5)	5.38d (1.8)	4.11dd (7.8, 9.1)	4.12dd (7.8, 9.0)	4.14dd (7.8, 9.1)	
5b-H	` ´ ´			3.85m	3.85m	3.85m	
6-H	4.81d (9.3)	4.73d (9.5)	4.75d (9.4)	4.83d (7.9)	4.77d (8.2)	4.80d (7.0)	
7a-H	2.54dd (6.3. 9.3)	2.56dd (6.0, 13.0)	2.50dd (3.9, 8.0)	2,20m (2 H)	2.20m (2 H)	2.20m (2 H)	
7b-H	2.24d (9.3)	2.23d (12.9)	2.21d (8.0)	()	· · ·		
H-A†	3.48dt (4.3, 10.7)	3.50dt (4.0, 10.0)	3.49d (4.2, 10.5)				
OMe	3.88s	3.85s	3.82s	3.89s	3.83s	3.88s	
OMe	3.85s	3.74s	3.81s	3.87s	3.81s	3.88s	
OMe	3.80s		3.81s	3.83s		3.83s	
OMe	3.76s			3.81s			
OCH-O		5.98d (1.4)	5.95d (1.5)		5.96d (1.9)	5.91s (2 H)	
001120		5.93d (1.4)	5.90d (1.5)		5.94d (1.9)	,	
Me	0.92d (7.5)	0.91d(7.2)	0.91d(7.2)				
Me	0.87d (6.9)	0.861(7.8)	0.90d (6.5)				
Me	0.804(7.0)	0.79d (6.9)	0.80d (6.9)				
	6 81dd (2 9 9 0)	6.77d (7.2)	6.60d (7.7)	6.97s	6.91s	6.65d (8.0)	
Arom	6 76s (2 H)	6 71d (8 0)	6 50s	6.93dd (1.8.8.1)	6.84dd (1.2. 7.9)	6.64s	
	6 65d (8 1) (2 H)	6 67d (1 7)	6 44s (2 H)	6 87d (7 9)	6 79d (8 0)	6 628	
	6 36dd (1 9 8 1)	6 60d (8 0)	6 30dd (1 7 7 8)	6 71d (8 1)	6 74d (8 2)	6.35dd (1.6.3.3)	
	0.5000 (1.7, 0.1)	6 57d (1 0)	0.5000 (1.7, 7.0)	6 45dd (1 8 8 1)	647dd (1 7 8 0)	6 33dd (1 4 1 7)	
		6 47dd (1 7 8 10)		6 36d (1.8)	6.36d (1.7)		
		0.4/ uu (1./, 0.10)		0.504 (1.0)	0.504 (1.7)		

* All spectra recorded in CDCl₃ solution. † H-A is H-1 of menthyloxy group.

fluorescent plates. Flash chromatography was performed with silica gel (Merck 9385, Kieselgel 60, 230–400 mesh). Small-scale purifications were conducted on a Chromatotron 7924 using 1, 2 or 4 mm plates prepared from silica gel (Merck 7749, Kieselgel, 50 F_{254} gipshaltig).

The reactions carried out under an inert atmosphere refer to the use of argon and 'white spot' nitrogen used directly from the cylinder. Tetrahydrofuran was dried by being stirred overnight over calcium hydride, passed down a dry alumina column and then distilled from sodium wire and benzophenone. Diethyl ether and dichloromethane were dried by passage down a dry alumina column and then distillation from calcium hydride. Dimethylformamide was distilled from calcium hydride, whilst dry toluene and benzene were prepared by distillation from calcium hydride and stored over sodium wire. Solutions of butyllithium in hexane were obtained from Aldrich and were regularly estimated.^{26,27} Lithium aluminium hydride was used as a solid, or a solution in dry tetrahydrofuran, estimated as described by Brown.²⁸

Preparation of (-)-5-(1-Menthyloxy) furan-2(5H)-one **2a**. 5-Methoxyfuran-2(5H)-one (131.8 g, 1.16 mol) and (-)-menthol (216.5 g, 1.39 mol, 1.20 mol equiv.) were stirred at 120–130 °C for 3 days, in a reaction vessel equipped with a reflux condenser. The reaction mixture was then distilled *in vacuo* (106–108 °C, 0.007 mmHg) to afford both isomers of **2** (148.6 g, 54%). HPLC showed that the green semisolid product consisted of 60.4 and 39.6% of the respective isomers.

The isomers of **2** were twice recrystallised from light petroleum (b.p. 40–60 °C), at a temperature of -25 to -30 °C, to afford diastereomerically pure **2a** as white needles (36.8 g), m.p. 70.4–71.2 °C (lit., ¹⁵ 70.5–70.7 °C). The green mother liquors were combined, and gave a second crop of pure **2a** (total: 61.98 g, 23%).

The remaining green liquor (86.59 g, 0.364 mol) was reepimerised by dissolution in dry benzene (500 cm³) and refluxing with a catalytic amount of PTSA (0.21 g, 1.10 mmol, 3.03×10^{-3} mol equiv.) for 1 h. After this time, the reaction mixture was allowed to cool to room temperature before being washed with water (3 × 100 cm³). The organic layer was then dried (MgSO₄), filtered and evaporated to afford a green semi-solid material. This was then recrystallised as above.

2a: m/z (CI) 256, (M + NH₄⁺, 100%); $[\alpha]_{D}^{20} - 137$ (EtOH, c 1.00); $\delta_{\rm H}$ 7.15 (d, J 5.77), 6.19 (d, J 5.78), 6.07(s), 3.64(dt) (J_1 4.30, J_2 10.69), 0.93 (d, J 6.45), 0.86 (d, J 7.05), 0.78 (d, J 6.90), 2.06–2.16 (m, 2 H), 1.58–1.69 (3 H) and 0.98–1.38 (4 H).

Table 4 ¹³C NMR spectra of dibenzylbutyrolactone derivatives*

Carbon atom	6a	6b	6c	7 a	7b	8a	8b	9a	9b	9c	13 a	13b	13c
C-2	177.26s	177.08s	177.32s	177.41s	177.32s	178.06s	177.88s	177.97s	178.27s	177.96s	178.94s	179.08s	178.82s
C-3	51.55d	51.46d	51.40d	52.08d	51.76d	52.21d	51.93d	52.35d	51.84d	52.05d	51.68d	51.38d	51.43d
C-4	48.14d	48.02d	48.26d	47.67d	47.69d	47.89d	47.73d	47.76d	47.66d	47.75d	39.76d	39.85d	39.73d
C-5	100.81d	100.72d	100.78d	102.10d	102.08d	102.91d	102.75d	104.07d	104.04d	103.71d	72.02t	72.03t	71.96t
C-6	75.04d	74.90d	75.37d	74.62d	74.64d	74.53d	74.40d	74.60d	74.57d	74.81d	74.31d	74.37d	74.55d
C-7	70.78d	70.90s	70.40s	49.28d	49.55d	50.50d	50.64d	37.26t	37.23t	37.18t	38.14t	38.06t	38.11t
C-1'1″	132.76s	133.53s	134.68s	132.95s	133.80s	133.69s	133.68s	132.63s	133.77s	135.53s	132.77s	134.04s	135.74s
	132.03s	130.39s	130.89s	132.30s	133.27s	132.46s	133.51s	129.38s	129.15s	130.33s	130.42s	130.24s	131.42
C-2'2"	110.34d	107.66d	107.63d	110.01d	107.90d	110.65d	107.33d	110.74d	107.36d	107.80d	110.98d	108.04d	108.28d
	110.13d	107.54d	106.69d	110.01d	107.39d	109.50d	106.75d	109.72d	106.57d	104.12d	109.70d	106.89d	103.48d
C-3'3"4'4"	149.23s	148.94s	153.62s	149.12s	148.97s	149.34s	149.06s	149.21s	148.94s	153.29s	149.45s	148.98s	138.00s
	149.12s	148.53s	153.47s	148.82s	148.71s	149.08s	148.59s	149.06s	148.03s	153.18s	149.33s	148.22s	153.50s
	148.90s	147.77s	152.97s	148.82s	147.98s	148.69s	148.06s	148.95s	147.89s	147.83s	149.14s	147.82s	147.86s
	148.47s	147.41s	148.03s	148.56s	147.65s	148.31s	148.56s	147.91s	147.53s	147.83s	140.06s	147.82s	146.36s
C-5'5"	112.75d	112.59d	152.97s	111.19d	111.34d	111.27d	110.30d	112.24d	111.42d	153.18s	111.89d	111.48d	153.50s
	110.57d	110.29d	109.98s	110.74d	111. 00 d	110.73d	110.25d	111.12d	110.72d	108.86d	111.48d	111.22d	108.57d
C-6'6″	120.69d	120.95d	122.48d	120.62d	120.94d	120.38d	120.83d	121.07d	121.2 4 d	121.98d	120.45d	120.45d	121.33d
	120.04d	120.71d	104.47d	119.71d	120.62d	119.73d	120.83d	119.45d	120.74d	107.80d	119.13d	120.30d	108.28d
OMe	55.89q	55.78q	60.87q	55.86q	55.83q	55.98q	55.79q	55.95q	55.76q	55.99q	55.98g	55.87g	60.90q
OMe	55.84q	55.73q	56.25q	55.86q	55.83q	55.80q	55.40q	55.85q	55.47q	55.99q	55.94q	55.75q	56.17q
OMe	55.78g		55.90g	55.81g		55.69q		55.85q		55.99q	55.85g	*	56.12q
OMe	55.73q		•	55.79q		55.59q		55.74q		•	55.78q		
OCH ₂ O		100.99t	101.60t		101.21t		101.37t		101.34t	101.19t	1	101.31t	101. 04 t

* All spectra recorded in CDCl₃ solution. OMenth and SPh carbons not included.

Preparation of (-)-(4R,5R)-4- $[3',4'-Dimethoxy-\alpha,\alpha-bis(phen$ ylthio)benzyl]-5-(1-menthyloxy)butyrolactone 4a.---3,4-Dimethoxybenzaldehyde diphenyl thioacetal (2.57 g, 6.98 mmol) was dissolved in dry THF (20 cm³), under argon, and the solution cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (2.30 mol dm⁻³; 3.10 cm³, 7.13 mmol, 1.02 equiv.), and stirring was continued at -78 °C for 2 h. Pre-cooled (-78 °C) (-)-5-menthyloxyfuranone 2a (2.16 g, 9.08 mmol, 1.30 mol equiv.), dissolved in dry THF (10 cm^3) , was then added via a double-ended needle to the orange solution and stirring was continued at -78 °C for 2 h before quenching of the reaction by addition of brine (10 cm³). The mixture was allowed to warm to room temperature and then extracted with diethyl ether $(2 \times 50 \text{ cm}^3)$. The combined organic extracts were dried (MgSO₄), filtered and evaporated to yield a yellow gum. Purification of this by flash chromatography on silica (CH_2Cl_2) afforded 4a as a light-sensitive colourless foam (3.73 g, 88%); $[α]_D^{23}$ -79.6 (c 0.250, CHCl₃) (Found: C, 69.4; H, 7.1. C₃₅H₄₂O₅S₂ requires C, 69.31; H, 6.93%); ν_{max}(neat)/cm⁻¹ 1790 (γ-lactone); see Tables 1 and 2 for ¹H and ¹³C NMR data; m/z 497 (M - SPh⁺, 5%), 389 (2%), 341 (75) and 285 (100).

Preparation of (-)-(4R,5R)-4-[3',4'-Methylenedioxy- α,α -bis-(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone **4b**.—3,4-Methylenedioxybenzaldehyde diphenyl thioacetal (1.77 g, 5.03 mmol) was dissolved in dry THF (50 cm³) under an argon atmosphere and the solution was cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (2.30 mol dm⁻³; 2.40 cm^3 , 5.52 mmol, 1.10 mol equiv.), and the solution stirred at -78 °C for 2 h. Pre-cooled (-78 °C) (-)-5-menthyloxybutenolide 2a (1.49 g, 6.26 mmol, 1.25 mol equiv.), dissolved in dry THF (25 cm³), was then added via a double-ended needle to the orange solution, and stirring was continued at -78 °C for 2 h before quenching of the reaction by addition of brine (10 cm³). The mixture was allowed to warm to room temperature and then extracted with diethyl ether (2×100) cm^3). The combined organic extracts were dried (MgSO₄), filtered and evaporated to yield a yellow gum, purification of which by flash chromatography on silica (light petroleum-

 Table 5
 ¹H NMR spectra of lirionol derivatives *

	10	12a ²²	12b ²²
1-H	4.11d (2.6)	4.17m (2.1, 2.2)	4.17m (2.7)
4-H	4.15d (1.9)	4.85d (6.4)	4.96d (5.8)
5-H	3.12dd (1.5, 8.5)	2.69m (2.1, 3.0, 6.7, 7.9)	2.63m
6a-H	3.21dd (8.5, 18.2)	2.84dd (7.9, 18.6)	2.76dd (8.1, 18.9)
6b-H	2.38d (18.2)	3.17d (18.6)	2.90d (18.9)
9-H	3.46t (2.6) 6.72s	2.40m (2.2, 3.0, 7.6)	2.26m (1.7, 2.7, 7.4)
Arom.	6.68s 6.66s		
	6.43s		

* All spectra recorded in CDCl₃ solution.

CH₂Cl₂) afforded **4b** as a light-sensitive colourless foam (2.37 g, 80%); $[\alpha]_{D}^{21}$ - 66.6 (c 0.980, CHCl₃) (Found: C, 69.2; H, 6.4. C₃₄H₃₈O₅S₂ requires C, 69.15; H, 6.44%); $\nu_{max}(neat)/cm^{-1}$ 1795 (γ-lactone); $\lambda_{max}(MeOH)/nm$ 289.6 (ε 12 040); see Tables 1 and 2 for ¹H and ¹³C NMR data; *m/z* 481 (M – SPh⁺, 5%), 373 (10%), 325 (5), 297 (100) and 269 (87).

Preparation of (-)-(4R,5R)-4-(3',4'-Dimethoxybenzyl)-5-(1menthyloxy)butyrolactone 5a.—Compound 4a (0.29 g, 0.479 mmol) was dissolved in MeOH (100 cm³), and NiCl₂·6H₂O (2.29 g, 9.6 mmol, 20.1 mol equiv.) added to the solution. The stirred green solution was then cooled to 0 °C and NaBH₄ (1.13 g, 29.7 mmol, 62.1 mol equiv.) was added to it carefully to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred for 1 h at room temperature. After this time, water (20 cm³) was added to the mixture which was then passed through a short Celite/silica column to remove the nickel salts. The filtrate was diluted with water (80 cm³) and the resulting solution extracted with diethyl ether $(3 \times 100 \text{ cm}^3)$. The combined extracts were dried (MgSO₄), filtered and evaporated, to afford 5a as a colourless foam (0.19 g, 100%); $[\alpha]_{D}^{24}$ -84.9 (c 0.929, CHCl₃) (Found: 70.8; H, 8.9. C₂₃H₃₄O₅ requires C, 70.77; H, 8.72%);

 Table 6
 ¹H NMR spectra of aryltetralins*

	14 a	14b	14c
1-H	4.10d (10)	4.08br d (11.0)	3.93br d (11.2)
2-H	2.54dd (11, 14)	2.47dd (11.0, 13.6)	2.13dd (11.2, 13.7)
3-H	2.64br m	2.59br m	1.84m
4a-H	2.94m	2.92dd (10.7, 14.0)	2.07d (8.0) (2 H)
4b-H	2.97m	2.95dd (5.1, 14.0)	
5-H	6.62s	6.60s	6.67s
8-H	6.33s	6.33s	6.42s
CH,	4.53dd (6, 8)	4.51dd (6.6, 8.6)	3.75dd (6.6, 8.4)
2	3.96m	3.97dd (8.6, 10.6)	3.13dd (8.4, 10.7)
OMe	3.87s	3.86s	3.91s
OMe	3.87s	3.62s	3.51s
OMe	3.82s		3.51s
OMe	3.60s		
OCH ₂ O		5.93d (1.4)	5.31d (1.2)
2		3.92d (1.4)	5.27d (1.2)
2'-H	6.82s	6.76s	6.60s
5'-H	6.82s	6.76s	_
6′-H	6.71s	6.60s	6.60s

* All spectra recorded in CDCl₃ solution.

 Table 7
 ¹³C NMR spectra of aryltetralins*

Carbon atom	14a	1 4 b	14c
C-1	48.81d	48.90d	48.61d
C-2	45.73d	45.75d	46.70d
C-2a	175.71s	175.64s	175.41s
C-3	40.08d	39.99d	40.08d
C-3a	71.04t	75.05t	70.96t
C-4	32.55t	32.55t	32.91t
C-4a	126.80s	126.83s	127.77s
C-5	110.86d	108.07d	108.42d
C-6	147.68s	146.42s	146.41s
C-7	147.60s	147.66s	146.62s
C-8	112.87d	111.33d	109.92d
C-8a	131.33s	131.27s	132.24s
C-1'	135.54s	136.95s	136.83s
C-2'	112.81d	112.82d	106.43d
Č-3'	147.82s	147.71s	153.09s
C-4′	148.71s	147.76s	138.74s
C-5'	111.30d	109.21d	153.09s
C-6'	121.86d	123.01d	106.43d
OMe	55.90a	55.87a	60.84g
OMe	55.90g	55.82g	56.14g
OMe	55.85g		56.14g
OMe	55.76a		
OCH ₂ O		100.98t	101.10t

* All spectra recorded in CDCl₃ solution.

 $v_{max}(neat)/cm^{-1}$ 1790 (γ -lactone); see Tables 1 and 2 for ¹H and ¹³C NMR data; m/z 390 (M⁺⁺, 31%), 251 (14), 235 (100) and 151 (ArCH₂⁺, 35) (Found: M⁺, 390.2406. C₂₃H₃₄O₅ requires M^+ , 390.2406).

Preparation of (-)-(4R,5R)-4-(3',4'-Methylenedioxybenzyl)-5-(1-menthyloxy)butyrolactone**5b**.—Compound**4b** $(2.05 g, 3.47 mmol) was dissolved in MeOH (100 cm³) and NiCl₂·<math>6H_2O$ (16.71 g, 70.2 mmol, 20.02 mol equiv.) was added to the solution. The stirred green solution was then cooled to 0 °C and NaBH₄ (7.95 g, 209 mmol, 60.2 mol equiv.) was added to it carefully, to minimise the effervescence products. The black suspension was then removed from the ice-bath and thoroughly stirred for 1 h at room temperature. After this time, water (20 cm³) was added to the mixture which was then passed through a short Celite/silica column to remove the nickel salts. The filtrate was diluted with water (100 cm³) and the resulting solution extracted with diethyl ether (4 × 80 cm³). The combined extracts were dried (MgSO₄), filtered and evaporated, to afford **5b** as a colourless foam (1.20 g, 92%); $[\alpha]_{\rm D}^{21} - 74.4$ (*c* 2.350, CHCl₃); $\nu_{\rm max}$ (neat)/cm⁻¹ 1795 (γ-lactone); $\lambda_{\rm max}$ (MeO-H)/nm 279.8 (ε 17 363); see Tables 1 and 2 for ¹H and ¹³C NMR data; *m*/*z* 374 M⁺⁺, 20%), 235 (32), 219 (90) and 135 (ArCH₂⁺, 100%) (Found: M⁺, 374.2090. C₂₂H₃₀O₅ requires *M*⁺, 374.2093).

Preparation of (-)-(3S,4R,5R,6R)-3-(3',4'-Dimethoxy- α hydroxybenzyl)-4-[3",4"-dimethoxy- α,α -bis(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone 6a.—3,4-Dimethoxybenzaldehyde diphenyl thioacetal (1.11 g, 3.00 mmol) was dissolved in dry THF (15 cm³), under an argon atmosphere, and the solution then cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (2.29 mol dm⁻³; 1.45 cm³, 3.32 mmol, 1.11 mol equiv.), and stirring was continued at -78 °C for 3 h. After this time, pre-cooled (-78 °C) 2a (0.89 g, 3.75 mmol, 1.25 mol equiv.), dissolved in dry THF (10 cm³), was added via a cooled double-ended needle to the orange solution. Stirring was continued at -78 °C for 2 h before pre-cooled (-78 °C) solution of veratraldehyde (0.76 g, 4.57 mmol, 1.52 equiv.) in dry THF (10 cm³), was added to it via a double-ended needle. After being stirred at -78 °C for a further 2 h, the solution was quenched by the addition of brine (5 cm^3) and allowed to warm to room temperature before being extracted with diethyl ether $(3 \times 5 \text{ cm}^3)$. The combined extracts were dried (MgSO₄), filtered and evaporated, to give a yellow foam which was purified by flash chromatography on silica (CH₂Cl₂/EtOAc). This gave **6a** as a colourless foam (1.87 g, 81%); $[\alpha]_{D}^{23} - 144.1$ (c 0.476, CHCl₃) (Found: C, 68.2; H, 6.95. C₄₄H₅₂O₈S₂ requires C, 68.39; H, 6.74%); $v_{max}(neat)/cm^{-1}$ 1780 (γ -lactone) and 3550 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 259 (Ar¹CHSPh⁺, 6%), 166 (Ar²CHO⁺, 6%) and 166 (Ar²CHO⁺, 100%).

Preparation of (-)-(3S,4R,5R,6R)-3-(3',4'-Methylenedioxy- α -hydroxybenzyl)-4-[3",4"-dimethoxy- α,α -bis(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone 6b.—3,4-Dimethoxybenzaldehyde diphenyl thioacetal (0.45 g, 1.22 mmol) was dissolved in dry THF (10 cm³), under a nitrogen atmosphere, and the solution then cooled to -78 °C and stirred. To the stirred solution was added, via a syringe, BuLi (2.38 mol dm⁻³; 0.70 cm³, 1.66 mmol, 1.36 equiv.) and stirring continued at -78 °C for 3 h. After this time, a pre-cooled (-78 °C) solution of 2a (0.50 g, 2.09 mmol, 1.7 mol equiv.) in dry THF (5 cm³), was added via a double-ended needle to the orange solution and stirring was continued at -78 °C for 1.75 h. A pre-cooled (-78 °C) solution of piperonal (0.30 g, 2.00 mmol, 1.63 mol equiv.), in dry THF (5 cm³) was added to it via a cooled double-ended needle. After being stirred at -78 °C for a further 2 h, the solution was quenched by the addition of a solution of TFA (1 mol equiv.) in THF at -78 °C. The reaction mixture was then allowed to warm to room temperature before saturated aqueous NaHCO₃ (5 cm³) was added to it, and the whole extracted with diethyl ether $(2 \times 40 \text{ cm}^3)$. The combined organic extracts were dried (MgSO₄), filtered and evaporated to yield a yellow foam, which was purified by flash chromatography on silica (CH_2Cl_2) to give **6b** as a colourless foam (0.92 g, 99%); $[\alpha]_D^{23} - 145.2$ (c 0.984, CHCl₃) (Found: C, 68.3; H, 6.4. $C_{43}H_{48}O_8S_2$ requires C, 68.25; H, 6.35%); $v_{max}(neat)/cm^{-1}$ 1775 (γ -lactone) and 3500 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; *m*/*z* 259 (Ar¹CHSPh⁺, 26%) and 151 (Ar²CHOH⁺, 100%).

Preparation of (-)-(3S,4R,5R,6R)-3-(3',4',5'-Trimethoxy- α hydroxybenzyl)-4-[3'',4''-methylenedioxy- α,α -bis(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone **6c**.-3,4-Methylenedioxybenzaldehyde diphenyl thioacetal (1.85 g, 5.26 mmol) was

dissolved in dry THF (50 cm³), under an argon atmosphere and the solution then cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (2.30 mol dm⁻³; 2.51 cm³, 5.77 mmol, 1.10 mol equiv.). Stirring was continued at -78 °C for 1.83 h, after which time, a pre-cooled (-78 °C) solution of 2a (1.49 g, 6.26 mmol, 1.19 mol equiv.) in dry THF (30 cm³) was added, via a double-ended needle, to the orange solution. Stirring was continued at -78 °C for 2 h before pre-cooled (-78 °C) 3,4,5trimethoxybenzaldehyde (1.31 g, 6.68 mmol, 1.27 mol equiv.), dissolved in dry THF (30 cm³), was added via a double-ended needle. After being stirred at -78 °C for a further 1.67 h, the solution was quenched by the addition of brine (10 cm^3) . The reaction mixture was allowed to warm to room temperature, when it was extracted with diethyl ether $(3 \times 100 \text{ cm}^3)$. The combined organic extracts were dried (MgSO₄), filtered and evaporated to yield a yellow foam, purification of which by flash chromatography on silica (CH₂Cl₂/EtOAc) afforded 6c as a white solid, m.p. 149–151 °C (3.29 g, 80%); $[\alpha]_D^{25}$ –159.1 (c 2.628, CHCl₃) (Found: C, 67.3; H, 6.6. C₄₄H₅₀O₉S₂ requires C, 67.18; H, 6.36%); $v_{max}(neat)/cm^{-1}$ 1780 (γ -lactone) and 3500 (OH); λ_{max} (MeOH)/nm 281.3 (ε 11 445); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 243 (Ar¹CHSPh⁺, 6%) and 196 (Ar²CHO⁺, 100%).

Preparation of (-)-(3S,4R,5R,6R,7S)- and (+)-(3S,4R,5R,-6R,7R)-3-(3',4'-Dimethoxy-a-hydroxybenzyl)-4-[3",4"-dimeth $oxy-\alpha-(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone$ - 7a and 8a.-3,4-Dimethoxybenzyl phenyl sulfide (1.01 g, 3.88 mmol) was dissolved in dry THF (30 cm³), under an argon atmosphere, and the solution then cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (2.29 mol dm⁻³) 2.04 cm³, 4.67 mmol, 1.20 molequiv.), and stirring was continued at -78 °C for 2 h. After this time, a pre-cooled (-78 °C) solution at 2a (1.27 g, 5.34 mmol, 1.37 mol equiv.) in dry THF (10 cm³) was added, via a double-ended needle, to the well stirred deep-red solution and the mixture was stirred at -78 °C for 2 h. A pre-cooled solution of veratraldehyde (0.86 g, 5.18 mmol, 1.33 mol equiv.) in dry THF (10 cm³) was then added to it, via a double-ended needle. The mixture was stirred at -78 °C for a further 1.25 h and then quenched by the addition of brine (10 cm³). The mixture was allowed to warm to room temperature and then extracted with EtOAc ($3 \times 100 \text{ cm}^3$). The combined extracts were dried (MgSO₄), filtered and evaporated to yield a yellow foam, purification of which by flash chromatography on silica (CH2Cl2/EtOAc) afforded a mixture of 7a and 8a as a colourless gum (2.03 g, 81%). HPLC analysis showed a 1:1 ratio of the two isomers, which were subsequently separated on silica (light petroleum-CH2Cl2) using a chromatotron. Compound 7a had $[\alpha]_{D}^{18}$ -179.1 (c 0.732, CHCl₃) (Found: C, 68.7; H, 7.3. C₃₈H₄₈O₈S requires C, 68.67; H, 7.23%); $v_{max}(neat)/cm^{-1}$ 1775 (γ -lactone) and 3560 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 664 (M⁺⁺, 1%), 343 (12), 259 (Ar¹CHSPh⁺, 12%) and 167 (Ar²CHOH⁺, 100%) (Found: M^+ , 664.3070. $C_{38}H_{48}O_8S$ requires M^+ , 664.3070). **8a**: $[\alpha]_D^{18} + 27.5$ (c 1.008, CHCl₃) (Found: C, 68.6; H, 7.4. $C_{38}H_{48}O_8S$ requires C, 68.67; H, 7.23%; $v_{max}(neat)/cm^{-1}$ 1775 (γ -lactone) and 3560 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; *m/z* 664 (M⁺⁺, 1%), 343 (8), 259 (Ar¹CHSPh⁺, 15%) and 167 (Ar²CHOH⁺, 100%) (Found: M⁺, 664.3070. $C_{38}H_{48}O_8S$ requires M^+ , 664.3070).

Preparation of (-)-(3S,4R,5R,6R,7S)- and (+)-(3S,4R,5R,-6R,7R)-3-(3',4'-Methylenedioxy- α -hydroxybenzyl)-4-[3",4"-dimethoxy- α -(phenylthio)benzyl]-5-(1-menthyloxy)butyrolactone 7b and 8b.—3,4-Dimethoxybenzyl phenyl sulfide (0.99 g, 3.80 mmol) was dissolved in dry THF (25 cm³), under an argon atmosphere, and the solution then cooled to -78 °C. To the stirred solution was added, via a syringe, BuLi (1.25 mol dm⁻³;

3.34 cm³, 4.18 mmol, 1.10 mol equiv.), and the mixture stirred at -78 °C for 3.33 h. A pre-cooled (-78 °C) solution of **2a** (141 g, 5.94 mmol, 1.56 mol equiv.) in dry THF (10 cm³) was then added, via a double-ended needle, to the deep red solution. Stirring was continued at -78 °C for 2 h, before a pre-cooled solution of piperonal (1.06 g, 7.08 mmol, 1.86 mol equiv.) in dry THF (10 cm³) was added, via a double-ended needle, to the mixture. This was stirred at -78 °C for a further 2 h and then quenched by the addition of brine (5 cm^3) . The mixture was allowed to warm to room temperature before extraction with diethyl ether (5 \times 50 cm³). The combined extracts were dried $(MgSO_4)$, filtered and evaporated, to give a yellow foam which, on purification by flash chromatography on silica $(CH_2Cl_2/$ EtOAc), afforded a mixture of 7b and 8b as a colourless gum (2.13 g, 86%). HPLC analysis showed a 1:1 ratio of the two isomers, which were subsequently separated by preparative HPLC. Compound **7b** had $[\alpha]_D^{22} - 160.5$ (c 1.440, CHCl₃) (Found: C, 68.1; H, 7.0. C₃₇H₄₄O₈S requires C, 68.52; H, 6.79%); $v_{max}(neat)/cm^{-1}$ 1770 (γ -lactone) and 3540 (OH); λ_{max} (MeOH)/nm 283.3; see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z (CI) 389 (M - Ar¹CHSPh⁺, 2%), 343 (12), 259 (Ar¹CHSPh⁺, 63%) and 151 (Ar²CHOH⁺, 100%). Compound 8b: $[\alpha]_{D}^{22}$ +17.5 (c 1.612, CHCl₃) (Found: C, 68.3; H, 6.8. C₃₇H₄₄O₈S requires C, 68.52; H, 6.79%); $v_{max}(neat)/cm^{-1}$ 1770 (γ -lactone) and 3550 (OH); $\lambda_{max}(MeO-$ H)/nm 283.2 (ε 15 050); see Tables 3 and 4 for ¹H and ¹³C NMR data; see Fig. 1 for X-ray; m/z (EI/CI), 539 (M -SPh⁺, 2%), 343 (36), 259 (Ar¹CHSPh⁺, 100%) and 151 (Ar²CHOH⁺, 59%).

Preparation of (-)-(3S,4R,5R,6R)-3- $(3',4'-Dimethox_{V-\alpha}$ hvdroxybenzyl)-4-(3",4"-dimethoxybenzyl)-5-(1-menthyloxy)butyrolactone 9a.-Compound 6a (0.67 g, 0.868 mmol) was dissolved in MeOH (150 cm³) and NiCl₂·6H₂O (4.22 g, 17.7 mmol, 20.4 mol equiv.) was added to the solution. The stirred green solution was cooled to 0 °C and NaBH₄ (2.02 g, 53.2 mmol, 61.2 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred for 1 h at room temperature. After this time, the mixture was diluted with water (20 cm³) and passed through a short Celite/silica column, in order to remove the nickel salts. Water (50 cm³) was added to the resulting solution which was extracted with diethyl ether $(3 \times 100 \text{ cm}^3)$. The combined extracts were dried (MgSO₄), filtered and evaporated, to afford essentially pure **9a** as a colourless foam (0.49 g, 100%); $[\alpha]_D^{23} - 131.2$ (c 0.224, CHCl₃) (Found: C, 68.9; H, 8.1. C₃₂H₄₄O₇ requires C, 69.06; H, 7.91%); $v_{max}(neat)/cm^{-1}$ 1775 (γ -lactone) and 3500 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 556 (M⁺⁺, 1%), 390 (M - Ar²CHO⁺, 8%), 251 (21), 235 (6), 166 (Ar²CHO⁺) 80%) and 151 ($Ar^1CH_2^+$, 100%) (Found: M^+ , 556.3040. $C_{32}H_{44}O_7$ requires M^+ , 556.3036).

Preparation of (-)-(3S,4R,5R,6R)-3-(3',4'-Methylenedioxy- α -hydroxybenzyl)-4-(3",4"-dimethoxybenzyl)-5-(1-menthyloxy)butyrolactone **9b**.—NiCl₂-6H₂O (6.92 g, 29.1 mmol, 20.0 mol equiv.) was added to a solution of compound **6b** (1.10 g, 1.45 mmol) dissolved in MeOH (60 cm³). The stirred green solution was cooled to 0 °C and NaBH₄ (3.31 g, 87.1 mmol, 59.9 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred for 1 h at room temperature. After this time, the reaction mixture was diluted with water (10 cm³) and passed through a short Celite/silica column, in order to remove the nickel salts. Water (30 cm³) was added to the resulting solution, which was then extracted with diethyl ether (3 × 50 cm³). The combined extracts were dried (MgSO₄), filtered and evaporated, to afford essentially pure **9b** as a colourless foam (0.78 g, 100%); $[\alpha]_{D}^{20} - 112.3$ (c 0.680, CHCl₃) (Found: C, 68.9; H, 7.5. C₃₁H₄₀O₈ requires C, 68.89; H, 7.41%); ν_{max} (neat)/cm⁻¹ 1775 (γ -lactone) and 3480 (OH); λ_{max} (MeOH)/nm 282.5 (ϵ 9450); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 540 (M⁺⁺, 2%), 390 (M - Ar²CHO⁺⁺, 4%, 251 (5), 235 (4) and 151 (Ar²CHOH⁺ or Ar¹CH₂⁺, 100%) (Found: M⁺, 540.2723. C₃₁H₄₀O₈ requires M^+ , 540.2723).

Preparation of (-)-(3S,4R,5R,6R)-3-(3',4',5'-Trimethoxy- α hydroxybenzyl)-4-(3",4"-methylenedioxybenzyl)-5-(1-menthyloxy)butyrolactone 9c.-NiCl₂·6H₂O (6.65 g, 27.9 mmol, 20.0 mol equiv.) was added to a solution of compound 6c (1.10 g, 1.40 mmol) dissolved in MeOH (150 cm³). The stirred green solution was cooled to 0 °C and NaBH₄ (3.16 g, 83.2 mmol, 59.4 mol equiv.) was added to it carefully, to minimise the effervescence produced. The black suspension was then removed from the ice-bath and thoroughly stirred for 1.33 h at room temperature. After this time, the reaction mixture was diluted with water (10 cm³) and passed through a short Celite/silica column, in order to remove the nickel salts. Water (50 cm^3) was added to the resulting solution, which was then extracted with diethyl ether $(3 \times 100 \text{ cm}^3)$. The combined extracts were dried (MgSO₄), filtered and evaporated, to afford essentially pure 9c as a colourless foam (0.73 g, 92%); $[\alpha]_D^{23}$ -125.6 (c 0.479, CHCl₃) (Found: C, 67.4; H, 7.45. C₃₂H₄₂O₉ requires C, 67.37; H, 7.37%); $v_{max}(neat)/cm^{-1}$ 1780 (γ -lactone) and 3500 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 570 (M⁺⁺, 9%), 374 (M – Ar²CHO⁺⁺, 5%), 235 (4), 219 (15), 197 (Ar²CHOH⁺, 196 (Ar²CHO⁺⁺, 33%), 196 (Ar²CHO⁺⁺, 33%) and 135 (Ar¹CH₂, 100%) (Found: M⁺, 570.2830. C₃₂H₄₂O₉ requires M⁺, 570.2829).

Attempted Cyclisation of 9b.—Compound 9b (70 mg, 1.30×10^{-4} mol) was dissolved in dry CH₂Cl₂ (15 cm³) and the solution stirred whilst TFA (0.3 cm³, 3.89 mmol, 30.0 mol equiv.) dissolved in dry CH₂Cl₂ (15 cm³) was added to it; stirring was continued for 20 h with regular HPLC monitoring. On completion of the reaction, the organic layer was washed with water, until the pH was neutral, then dried (MgSO₄), filtered and evaporated to give a red gum. Purification was carried out on silica (CH₂Cl₂/EtOAc) using a Chromatotron to afford 10 as the main fraction (13 mg); $\nu_{max}(neat)/cm^{-1}$ 1725 (C=O) and 3300–3500 (OH); see Table 5 for ¹H NMR data.

Preparation of (-)-(3S,4R,6R)-3- $(3',4'-Dimethoxy-\alpha-hydr$ oxybenzyl)-4-(3",4"-dimethoxybenzyl)butyrolactone 13a.-To the alcohol 9a (311 mg, 0.559 mmol), under an argon atmosphere, was added, via a syringe, a solution of KOH in EtOH $(0.40 \text{ mol } \text{dm}^{-3}; 5.60 \text{ cm}^3, 2.24 \text{ mmol}, 4.01 \text{ mol } \text{equiv.})$. NaBH₄ (85 mg, 2.24 mmol, 4.01 mol equiv.) was then added to the well stirred pale yellow solution via a solid addition side-arm, and the stirring was continued for 30 min. The reaction was then quenched by the addition to the mixture of aqueous HCl until pH 3.0. An equal volume of water (5.60 cm³) was then added to the mixture which was then extracted with CH_2Cl_2 (3 × 20 cm³). The combined extracts were set aside overnight with traces of acid still present, and then thoroughly washed with water $(3 \times 30 \text{ cm}^3)$, dried (MgSO₄) and filtered. Purification on silica (light petroleum-CH₂Cl₂) using a Chromatotron afforded **13a** as a colourless foam (113 mg, 5%); $[\alpha]_D^{23} - 39.3$ (c 1.172, CHCl₃) (Found: C, 65.7; H, 6.6. C₂H₂₆O₇ requires C, 65.67; H, 6.47%); $v_{max}(neat)/cm^{-1}$ 1775 (γ -lactone) and 3550 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 402 (M⁺⁺, 15%), 385 (41), 236 (6), 191 (4), 167 (Ar²CHOH⁺, 61%), 151 (Ar¹CH₂⁺, 78%) and 137 (Ar¹⁺, 11%) (Found: M⁺, 402.1680. $C_{22}H_{26}O_7$ requires M^+ , 402.1679).

Preparation of (-)-(3S,4R,6R)-3-(3',4'-Methylenedioxy- α hydroxybenzyl)-4-(3",4"-dimethoxybenzyl)butyrolactone 13b. The alcohol 9b (201 mg, 0.372 mmol) was dissolved in EtOH (1 cm³) under an argon atmosphere and to the stirred solution was added, via a syringe, a solution of KOH in EtOH (0.74 mol dm⁻³; 2.00 cm³, 1.48 mmol, 3.99 mol equiv.). Solid NaBH₄ (56.4 mg, 1.48 mmol, 3.99 mol equiv.) was then added to the well stirred pale yellow solution, via a solid addition side-arm, and the stirring was continued for 1.15 h. The reaction was quenched by the addition to the mixture of aqueous HCl until pH 3.0. An equal volume of water (3.0 cm^3) was then added to the mixture which was then extracted with CH_2Cl_2 (3 × 10 cm³). The combined extracts were stored overnight with traces of acid still present and then thoroughly washed with water $(3 \times 20 \text{ cm}^3)$, dried (MgSO₄) and filtered. Purification by Chromatotron on silica (light petroleum-CH₂Cl₂) afforded 13b as a colourless foam (53.8 mg, 38%); $[\alpha]_D^{23}$ –35.2 (c 1.076, CHCl₃) (Found: C, 65.3; H, 5.85. C₂₁H₂₁O₇ requires C, 65.28; H, 5.70%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1770 (γ -lactone) and 3600 (OH); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 386 (M^{•+}, 6), 369 (32), 236 (12), 191 (2) and 151 (Ar¹CH₂⁺ or Ar²CHOH⁺, 100%) (Found: M⁺, 386.1366. C₂₁H₂₂O₇ requires M⁺, 386.1366).

Preparation of (-)-6-epi-Podorhizol 13c.²⁴—The alcohol 9c (348 mg, 0.611 mmol) was dissolved in EtOH (2 cm³) under an argon atmosphere and to the stirred solution was added, via a syringe, a stirred solution of KOH in EtOH (0.53 mol dm⁻³; 4.60 cm³, 2.43 mmol, 3.98 mol equiv.). Solid NaBH₄ (92.9 mg, 2.44 mmol, 4.00 mol equiv.) was then added to the well stirred pale yellow solution, via a solid addition side-arm, and the stirring was continued for 45 min. The reaction was quenched by the addition to the mixture of aqueous HCl until pH 3.0. An equal volume of water (6.6 cm^3) was added to the mixture which was then extracted with CH_2Cl_2 (3 × 15 cm³). The combined extracts were set aside overnight with traces of acid still present and then thoroughly washed with water $(3 \times 30 \text{ cm}^3)$, dried (MgSO₄), and filtered. Purification by Chromatotron on silica (light petroleum– CH_2Cl_2) afforded 13c as a colourless foam (108 mg, 43%); $[\alpha]_{D}^{25}$ - 36.3° (*c* 2.160, CHCl₃) (Found: C, 63.3; H, 5.9. C₂₂H₂₄O₈ requires C, 63.46; H, 5.77%); $\nu_{max}(neat)/cm^{-1}$ 1770 (OH); λ_{max} (MeOH)/nm 285.1 (ϵ 13 020); see Tables 3 and 4 for ¹H and ¹³C NMR data; m/z 416 (M^{•+}, 14%), 399 (60), 263 (2), 238 (32), 220 (13), 197 (Ar²CHOH⁺, 59%), 196 (Ar²CHO⁺, 70%) and 135 (Ar¹CH₂⁺, 100%) (Found: M⁺, 416.1470. $C_{22}H_{24}O_8$ requires M^+ , 416.1471.

Preparation of (-)-(1S,2R,3R)-1-(3',4'-Dimethoxyphenyl)-3-(hydroxymethyl)-6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic Acid Lactone **14a**.—Compound **13a** (48.3 mg, 0.125 mmol) was dissolved in dry CH₂Cl₂ (5 cm³) under an argon atmosphere and to the stirred solution was added freshly distilled TFA (0.50 cm³, 6.49 mmol, 51.9 mol equiv.), via a syringe. The resulting well mixed solution was allowed to stand at room temperature for 1 h, after which HPLC analysis revealed a single peak. CH₂Cl₂ (50 cm³) was added to the reaction mixture and the organic layer separated, washed with water (5 × 20 cm³), dried (MgSO₄), filtered and evaporated to afford **14a** as a white foam (43.6 mg, 91%); $[\alpha]_D^{2^2}$ -58.7 (c 0.872, CHCl₃); $v_{max}(neat)/cm^{-1}$ 1795 (γ -lactone); see Tables 6 and 7 for ¹H and ¹³C NMR data; m/z (EI) 384 (M⁺, 100%), 325 (6) and 269 (19) (Found: M⁺, 384.1570. C₂₂H₂₄O₆ requires M⁺, 384.1567).

Preparation of (-)-(1S,2R,3R)-1-(3',4'-Methylenedioxyphenyl)-3-(hydroxymethyl)-6,7-dimethoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic Acid Lactone 14b.—Compound 13b (54.0 mg, 0.14 mmol) was dissolved in dry CH₂Cl₂ (5 cm³) under an argon atmosphere and to the stirred solution was added freshly distilled TFA (0.50 cm³, 6.49 mmol, 46.4 mol equiv.), via a syringe. The resulting solution was stirred at room temperature for 3 h, after which HPLC analysis revealed a single product. CH₂Cl₂ (50 cm³) was added to the mixture and the organic layer was washed with water (5 × 20 cm³), dried (MgSO₄), filtered and evaporated, to afford **14b** as a white foam (49.5 mg, 96%); $[\alpha]_D^{20}$ -64.4 (*c* 0.990, CHCl₃); $\nu_{max}(neat)/cm^{-1}$ 1795 (γ -lactone); $\lambda_{max}(MeOH)/nm$ 281.7; see Tables 6 and 7 for ¹H and ¹³C NMR data; *m/z* (EI) 368 (M⁺, 100%) (Found: M⁺, 368.1260. C₂₁H₂₀ requires *M*⁺, 368.1260).

Preparation of (-)-Deoxyisopodophyllotoxin 14c.—Compound 13c (43.0 mg, 0.103 mmol) was dissolved, with stirring, in neat, freshly distilled TFA (5 cm³), under an argon atmosphere. The solution was then allowed to stand at room temperature for 2.33 h after which time, HPLC indicated that 13c had completely disappeared. CH₂Cl₂ (50 cm³) was added to the mixture and the organic layer was washed with water (5 × 50 cm³), dried (MgSO₄), filtered and evaporated, to yield a white foam. This was recrystallised twice from CH₂Cl₂-light petroleum to afford 14c (38.0 mg, 92%) as a white solid, m.p. 258–259 °C (lit., 256–258 °C); $[\alpha]_{D}^{21}$ – 53.3 (c 0.976, CHCl₃) (Found: C, 66.2; H, 5.5%. C₂₂H₂₂O₇ requires C, 66.33; H, 5.53%); $\nu_{max}(neat)/cm^{-1}$ 1790 (γ-lactone); see Tables 6 and 7 for ¹H and ¹³C NMR data; m/z (EI) 398 (M⁺, 25%) (Found: M⁺, 398.1370. C₂₂H₂₂O₇ requires M⁺, 398.1374).

Acknowledgements

We are grateful to the Wellcome Foundation for providing financial support for the project and for running highfield and COSY spectra. We are also grateful to Professor M. B. Hursthouse (SERC X-Ray Service, University College, Cardiff) for carrying out the X-ray analysis of **8b**.

References

- 1 A. Pelter in *The Shikimic Acid Pathway*, ed. E. E. Conn, Plenum Press, New York, 1986, p. 201.
- 2 R. W. Ward, Natural Product Reports, 1993, 10, 1.
- 3 W. D. Macrae and G. H. N. Towers, Phytochem., 1984, 23, 1207.
- 4 D. C. Ayres and J. D. Loike, *Lignans*, Cambridge University Press, 1990.
- 5 S. G. Weiss, M. Tin-Wa, R. E. Perdue and N. R. Farnsworth, J. Pharm. Sci., 1975, 64, 95.

- 6 I. Jardine in Anticancer Agents based on Natural Products, eds. J. M. Cassady and J. D. Douros, Academic Press, 1980, ch. 9.
- 7 J. L. Hartwell, *Cancer Treat. Rept.*, 1976, **60**, 1031; A. H. Barclay and R. E. Perdue, *Cancer Treat. Rept.*, 1976, **60**, 1081.
- 8 B. F. Issell, A. R. Rudolph, A. C. Louie and T. W. Doyle in *Etoposide* (VP-16): Current Status and New Developments, ed. B. F. Issell, F. M. Muggia and S. K. Carter, Academic Press, 1984, chs. 1 and 2.
- 9 A. Felter, R. S. Ward, P. Satyanarayana and P. Collins, J. Chem. Soc., Perkin Trans. 1, 1983, 643.
- 10 A. Pelter, R. S. Ward, M. C. Pritchard and I. T. Kay, J. Chem. Soc., Perkin Trans. 1, 1988, 1603 and 1615.
- 11 A. Pelter, R. S. Ward and G. M. Little, J. Chem. Soc., Perkin Trans. 1, 1990, 2775.
- 12 For a preliminary account of this work, see A. Pelter, R. S. Ward, D. M. Jones and P. Maddocks, *Tetrahedron Asymm.*, 1990, 1, 857; 1992, 3, 239.
- 13 For a review of the asymmetric synthesis of lignans, see R. S. Ward, *Tetrahedron*, 1990, **46**, 5029.
- 14 B. L. Feringa and J. C. de Jong, J. Org. Chem., 1988, 53, 1125.
- 15 B. L. Feringa and B. de Lange, Tetrahedron, 1988, 44, 7213.
- 16 B. L. Feringa, B. de Lange and J. C. de Jong, J. Org. Chem., 1989, 54, 2471.
- 17 H. O. House, D. S. Crumrine, A. Y. Teranishi and H. D. Olmstead, J. Am. Chem. Soc., 1973, 95, 3310.
- 18 F. E. Ziegler and J. A. Schwartz, J. Org. Chem., 1978, 43, 985.
- 19 D. A. Evans, J. V. Nelson and T. R. Taber, *Topics in Stereochem.*, 1982, 13, 1.
- 20 C. H. Heathcock in Asymmetric Synthesis, vol. 3, ed. J. D. Morrison, New York, Academic Press, 1989, ch. 2.
- 21 T. G. Black and K. Yang, J. Chem. Soc., Chem. Commun., 1990, 819.
- 22 G. Weeratunga, D. Rajapaksa and R. Rodrigo, J. Org. Chem., 1985, 50, 5902.
- 23 R. V. Speybroeck, H. Guo, J. V. D. Eycken and M. Vandewalle, Tetrahedron, 1991, 47, 4675.
- 24 J. P. Robin, R. Dahl and E. Brown, Tetrahedron, 1982, 38, 3667.
- 25 A. Pelter, R. S. Ward, M. C. Pritchard and I. T. Kay, *Tetrahedron Lett.*, 1985, 26, 6377.
- 26 W. K. Kofron and L. M. Baclawski, J. Org. Chem., 1976, 41, 1879.
- 27 S. C. Watson and J. F. Eastman, J. Organomet. Chem., 1967, 9, 165.
- 28 H. C. Brown, Organic Synthesis via Boranes, 1975, Wiley, New York, p. 241.
- 29 Prof. M. B. Hursthouse, SERC X-Ray Service, private communication.

Paper 3/02727I Received 14th May 1993 Accepted 20th July 1993